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Abstract 

The mathematical property "orthogonal relationship" is used in proving the fact that 
isospectrality, isocodality and isocoefficiency of vertices within a graph are all equivalent. 
The same is true for isospectrality, "strict isocodality" and "strict isocoefficiency" of 
pairs (including edges) within a graph, whereas the "weak" versions of the latter properties 
are necessary but not sufficient for isospectrality of pairs. Similarly, necessary and 
sufficient conditions for isospectrality of vertices and pairs in different graphs are 
derived. In all these proofs, the concept of "orthogonal relation" plays a major role in 
that it allows the use of tools of elementary linear algebra. 

1. Introduction 

Much work has been devoted to the study of isospectral and endospectral 
graphs and to the discussion of the properties of the special vertices encountered 
in such graphs, termed isospectral and endospectral vertices or points. For leading 
references, see the book by Trinajsti6 [1] and the recent reviews by Randi6 [2,3]. 

Chemists, of course, are interested not only in atoms, but in bonds or, more 
generally, in relations between atoms, called pairs. Quite naturally, therefore, in the 
present context isospectral/endospectral edges [4] and pairs [5,6] were at least 
cursorily examined. In these studies, interesting properties of such vertices and 
pairs were detected: isospectral graphs may be produced whenever one or the other 
of two special sites (vertices, edges, pairs) is "perturbed" in some arbitrary manner 
(whence the term isospectral for such sites), the eigenvector coefficients associated 
with such sites may exhibit some regularities Cisocoefficiency") [7], and the numbers 
of possible walks in a graph may be equal for two such sites throughout all different 
lengths Cisocodality") [8]. 

Typically, however, such properties were discussed on a phenomenological 
basis, without describing the mathematical relations between them in general. There 
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is one noticeable exception: Hemdon and Ellzey [7] rigorously proved the equivalence 
of isospectrality and isocoefficiency of vertices within a graph. Apart from this, the 
development of the mathematics underlying these phenomena leaves much to be 
desired. In the case of isospectral edges and pairs, not even consistent definitions 
were given and, partly for this reason, necessary and sufficient conditions for 
isospectrality of these are not known. 

From a mathematical point of view, isospectrality of graphs formally resembles 
isomorphism of graphs, in that both are equivalence relations, the former less 
demanding than the latter. Similarly, isospectrality of vertices is a less demanding 
equivalence relation than symmetry of vertices, the former giving a coarser partition 
of vertices than the latter. Our aim in the present study was to use these analogies 
in order to derive simple and elegant mathematical proofs of the equivalence of the 
properties mentioned above, or to point out wherever they are not equivalent, which 
may happen in the case of vertices in different graphs or in the case of pairs 
including edges even within a single graph. 

To achieve this goal, we found it useful to introduce another property, the 
"orthogonal relationship". After demonstrating in section 2 the orthogonal relationship 
of isospectral graphs, we use this property in treating isospectral vertices within a 
single graph in section 3, isopectral pairs within a single graph in section 4, and 
isospectral vertices and pairs in different graphs in section 5. 

2. Isospectral graphs 

All graphs in this paper are undirected and may contain loops or multiple 
edges. 

DEFINITION 

Two graphs G and H with adjacency matrices A and B are called isospectral, 
ifA and B have the same spectrum (the same eigenvalues) or, equivalently, the same 
characteristic polynomial pc(x) = det(A + xl) [9, 10]. 

By the well-known spectral theorem of linear algebra (see, e.g. [11]) for a 
symmetric linear map, there exists an orthogonal basis consisting of eigenvectors 
of this map. Moreover, matrices A and B have the same eigenvalues if and only if 
they are similar, that is, there exists a regular transformation S such that 

SA =BS (1) 

holds. By the spectral theorem for symmetric matrices, S can be chosen as an 
orthogonal matrix (that is, a regular matrix S with S -1 = S T, where S "r is the transposed 
matrix). 
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Examples 

(i) If G and H are isomorphic graphs, then there exists a permutation matrix 
S (which is a special kind of orthogonal matrix) which transforms one form of the 
adjacency matrix, say A, into the other, B, so fulfilling eq. (1). Therefore, isomorphic 
graphs are isospectral. 

(ii) A famous example of two isospectral but not isomorphic graphs [2, 12] 
is that of the carbon frames of 2-phenylbutadiene (1) and 1,4-divinylbenzene (2), 
shown in fig. 1. 

9 1 1 

4~ 8 40~8 
5 7 5 6 7 

6 

1 

1 2 

Fig. 1. Two non-isomorphic isospectral graphs. 

The reader can easily check that matrix T 1 given below is orthogonal and 
converts the adjacency matrix A of 1 into that of 2, B, in the sense of eq. (1): 

T1 = 

0.5 0 - 0 . 5  0 0.5 0 0.5 0 0 0 
0 0 0 0 0 1 0 0 0 0 

-0 .5  0 0.5 0 0.5 0 0.5 0 0 0 
0 0 0 1 0 0 0 0 0 0 

0.5 0 0.5 0 0.5 0 - 0 . 5  0 0 0 
0 1 0 0 0 0 0 0 0 0 

0.5 0 0.5 0 - 0 . 5  0 0.5 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 

T 1 can be derived by methods outlined in the next section. Of course, by the non- 
isomorphy of the two graphs, we cannot expect a permutation matrix to act as an 
orthogonal transformation here. 
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3. Isospectral vertices within a graph (endospectral vertices) 

DEFINITION 

Two vertices i and j (1 < i < j <  n) in a graph are referred to as i so spec t ra l  

ver t i ces  [7] or e n d o s p e c t r a l  ver t i ces  [3] or points, if every perturbation at i or j, 
respectively, yields two isospectral graphs. 

The expression "every perturbation" includes attachment of any arbitrary 
fragment and more, as is shown below. 

The following formula was given by Hosoya [13, 14]: If a graph is composed 
of two subgraphs G and H with adjacency matrices A and B, which are joint in 
exactly one common vertex i (as in fig. 2), then the characteristic polynomial PAiB 

of the graph is given by the formula 

PA iB (X) = PA (X)PB - i (X) + PA - i (X) PB (X) -- XpA _ i (X)pB - i (X), (2) 

where PA and PB are the characteristic polynomials of A and B,  PA - i and PB - i those 
of the same graphs reduced by vertex i. 

i 

Fig. 2. A graph composed of two sub- 
graphs joined in vertex i (schematic). 

Equation (2) is a generalization of Heilbronner's formula [15] for the characteristic 
polynomial of a graph formed from two simpler graphs by joining them over an 
additional edge as in fig. 3. 

i j 

Fig. 3. A graph composed of two sub- 
graphs joined by an edge i, j (schematic). 
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Now we are able to prove a simple criterion for endospectrality of two points 
in a graph. 

LEMMA 3.1 

To check whether two particular vertices i and j in a graph are endospectral, 
it is sufficient to verify isospectrality of  the two graphs obtained by one of the 
following perturbations: 

(i) Removal of i or j in turn. 

(ii) "Marking" of  i or j in turn by a loop (entering "1" in diagonal elements aii 

(ajj) of the adjacency matrix). 

(iii) Addition of  a new vertex at site i or j in turn. 

P r o o f  

Use the following characteristic polynomials: 

for the original graph G, P 

P-i 

Pi 

Pi+ 

Pi +H 

q 

q_ 

for G with vertex i removed, 

for G with vertex i marked, 

for G with a new vertex added at i, 

for G with an arbitrary fragment H (that is, another graph) attached at i (in 
the sense of fig. 2), 

for this fragment H, 

for H reduced by the vertex which serves for joining it to G (in the sense of 
fig. 2). 

By elementary manipulations of the corresponding determinants, it can be 
proven that 

p~(x) =p(x) + p_i(x). 

By (2), it is seen that 

Pi + H (x) = p (x) q_ (x) + P-i (x) q (x) - xp_ i (x) q_ (x) 

(3) 

(4) 

holds. Perturbation (iii) is obviously a special case of attaching a fragment at i, 
where 

q(x)  = x 2 - 1 

and 

q_(x) = x  
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hold, so that (4) reduces to 

Pi+ (X) = xp(x)  - P-i (X). (5 )  

Of course, corresponding formulas hold for vertex j. Now let perturbation (i) result 
in two isospectral graphs, that is 

P-i (x) = p_j (x). (6) 

From (6) and (3), we at once obtain 

pi (x) = (x) (6 ' )  

(corresponding to perturbation (ii)), and from (6) and (5) similarly 

Pi + (x )  = p j+ (x)  (6") 

(corresponding to perturbation (iii)). Obviously, eqs. (6), (6'), and (6") are equivalent. 
Using (4) and (6), we see that they are even equivalent to 

Pi + ;1 (x)  = p j  + tt ( x ) ,  

which means that i and j meet the definition of endospectral points. In other words, 
equality of the characteristic polynomials obtained by one sort of perturbation ((i), 
(ii), or (iii)) is sufficient for equality obtained by any other perturbation. [] 

Some perturbations are drawn in fig. 4. Note that the expression "attachment 
of any arbitrary fragment" is not limited to attachment via a single edge (fig. 3), 
but that attachment via many edges is allowed (fig. 2) by the very general nature 
of formulas (2) and (4), as exemplified by graph 7 (fig. 4). 

7 

6 

J 

3 4 5 6 7 

Fig. 4. A graph (3) containing endospectral vertices (2 and 6) and endospectral pairs ((2, 4) and 
(4, 6)), and the results of some perturbations at its vertex 2 (4 -7 ) .  4: vertex removed, corre- 
sponding to perturbation (i); 5: a loop added, corresponding to perturbation (ii); 6: a new vertex 
added, corresponding to perturbation (iii); 7: a two-vertex fragment added via two edges. 
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Examples 

(i) Equivalence by symmetry is a special case of endospectrality of vertices. 
Two vertices i and j in a graph with adjacency matrix A are equivalent by symmetry 
if and only if there exists a permutation matrix S with 

and 

SA = AS (7) 

Sei = ej, (8) 

where e i and ej are the ith and j t h  unit vectors. This means S is the matrix of an 
automorphism of the graph, which transforms vertex i into vertex j. 

(ii) A non-trivial example is provided by graph 3 given in fig. 4. Here, 
vertices 2 and 6, not equivalent by symmetry, will turn out to be endospectral. Note 
that the isospectral molecular graphs of fig. 1 are derivatives of  3: a two-vertex 
group (vertices 9 and 10) has been attached to vertex 2 (leading to 1) or vertex 6 
(leading to 2). 

Isospectral graphs, on the one hand, are always related by an orthogonal 
transformation, since they correspond to similar matrices. For the special case of 
isomorphic graphs, a permutation transforms one representation of the graph into 
another. On the other hand, vertices equivalent by symmetry, which are a special 
kind of endospectral vertices, are related by a permutation, which is a special kind 
of orthogonal transformation. It is therefore quite natural to ask whether endospectral 
vertices in general are in some sense "orthogonally related". This turns out to be 
the case. In order to examine this in detail, we first give a definition. 

D E F I N I T I O N  
\ 

Two vertices i and j in a graph with adjacency matrix A are said to be 
orthogonally related if there exists an orthogonal matrix S with properties (7) 

SA = AS 

and (8) 

Sei  = ej .  

S is called an orthogonal relation between i and j. 

Obviously, this is a generalization of the relation which holds between vertices 
which are equivalent by symmetry. Instead of  a permutation, we here admit an 
orthogonal transformation in general. 
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Example 

Vertices 2 and 6 in 3 are in fact orthogonally related. An orthogonal relation 
is given by the matrix 

r z  = 

0.5 0 - 0 . 5  0 0.5 0 0.5 
0 0 0 0 0 1 0 

- 0 . 5  0 0.5 0 0.5 0 0.5 

0 0 0 1 0 0 0 
0.5 0 0.5 0 0.5 0 - 0 . 5  

0 1 0 0 0 0 0 
0.5 0 0.5 0 - 0 . 5  0 0.5 

0 0 0 0 0 0 0 

0 
0 
0 

0 
0 ' 

0 
0 

1 

where T 2 is the restriction of  T 1 (given above) to the first eight rows and columns, 
corresponding to the fact that graph 3 is 1 (or 2) without vertices 9 and 10. Later 
in this section we shall derive this matrix. 

Before clarifying the association between endospectrality and orthogonal 
relationship, we give two further definitions of  properties which are frequently 
discussed [2,7, 8]. 

DEHNITION 

Let A v be the vth power of  the adjacency matrix A of  a graph of  n vertices. 
Let the elements of  A" be denoted as ~ (i, j = 1 . . . . .  n). Then the vertices i and 
j are called isocodal if the corresponding diagonal elements are equal for i and j 
in all powers of  A: 

a(v) 
ii = a~ / (v = 0, 1, 2 . . . .  ). (9) 

By the Cay ley-Hami l ton  theorem [11], it is sufficient for isocodality to show 
the validity of  (9) for v =  1 . . . . .  n -  1 [8]. 

DEHNITION 

Two vertices i and j are called isocoefficient if for each eigenspace V of A 
and each orthonormal basis {x 1 . . . . .  x m } of V the sum over the squared ith coefficients 
is equal to the sum over the squared j t h  coefficients: 

r?l m 
2 2 ~.. xri ~ (10) = Xrj , 

r= 1 r= 1 

where x, = (x,1 . . . . .  Xrn) T for r = 1 . . . . .  m. 
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For each eigenvector x = (xl . . . . .  xn) T belonging to a non-degenerate eigenvalue 
of  A (that is, m = 1), (10) reduces to 

2 x 2 = x j ,  (1 1) 

which means that the coefficients for i and f o r j  have the same absolute value. We 
can achieve validity of (11) even for degenerate eigenspaces as follows. 

LEMMA 3.2 

Let i and j be isocoefficient vertices in a graph with adjacency matrix A. Then 
an orthonormal basis {x I . . . . .  Xm} of each eigenspace V of dimension m of A can 
be chosen so that 

2 2 ( 1 2 )  
X r i  ~ -  X r j  

holds for all r = 1 . . . . . .  m. 

Proof 

Let {Yl . . . . .  Ym} be an arbitrary orthonormal basis of V. Together with an 
orthonormal basis of the orthogonal complement V ±, this provides a basis for IR n. 
We intend to transform the basis of V in an appropriate way while leaving that of 
V ± invariant. That is, the matrix 

y = 

l Y l l  ... Ym 1 

• " • Y m  n 

should be transformed into a matrix 

X = 

X l l  

~ X l n  

. . .  X m  I 

• • • X m n  

under the following conditions: 

m m 

E XrkXrt = ~ Yrk Yrt (k, l= 1 . . . . .  n) (13) 
r =  1 r =  l 
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and (12) 

2 2 
Xri = Xrj (r = 1 . . . . .  m) .  

Equations (13) are required by orthonormality of  both the given and the desired 
basis of  IR n (there are constant scalar products of  the rows, both over IR n and V -L, 
leading to invariance of  the sums in (13)). The rows Y.k (k = 1 . . . . .  n) of  Y generate 
a subspace W of  dimension m. The presumed isocoefficiency may be written as 

II y . i l l  = II y.j II, 

where ]1.[I is the Euclidean norm. Therefore, we can choose an orthogonal map 
T : W ---) W with all eigenvalues real (take a reflection by an appropriate hyperplane 
of  IR n) and 

Ty. i = y.j 

being satisfied. After transforming T into diagonal form by 

T =  U- 1DU 

with a diagonal matrix D, containing the eigenvalues of  T (which all are +1 
or - 1 ) ,  and an orthogonal basis transformation matrix U, we have 

Uy.j = DUy.  i. 

That is, the coefficients of  Uy.j and Uy.i differ at most in their signs. Therefore, 
defining the kth row of X as 

x.~ = Uy. k 

solves the problem raised above. [] 

(The statement of  this lemma is given in [4] without proof.) 

Example  

Vertices 2 and 6 in 3 are both isocodal and isocoefficient, as the reader may 
check by inspection of tables 1 and 2, where the first powers of  A and an orthonormal 
base of  eigenvectors for A are listed. 

In the remainder of  this section, the equivalence of  all four properties defined 
above will be proven. 
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Table 1 

The first eight powers of the adjacency matrix A of 3. 

A 

~0 1 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 

0 1 0 1 0 0 0 1 

0 0 1 0 1 0 0 0 

0 0 0 1 0 1 0 0 

0 0 0 0 1 0 1 0 

0 0 0 0 0 1 0 1 

~,0 0 1 0 0 0 1 0 

A 3 

"0 2 0 1 0 0 0 1 ' 

2 0 4 0 1 0 1 0 

0 4 0 4 0 2 0 4 

1 0 4 0 3 0 2 0 

0 1 0 3 0 3 0 2 

0 0 2 0 3 0 3 0 

0 1 0 2 0 3 0 3 

1 0 4 0 2 0 3 0 ,  

A 5 

"0 6 0 5 0 2 0 5 

6 0 16 0 7 0 7 0 

0 16 0 18 0 12 0 18 

5 0 18 0 12 0 11 0 

0 7 0 12 0 11 0 11 

2 0 12 0 11 0 11 0 

0 7 0 11 0 11 0 12 

5 0 18 0 11 0 12 0 

A 7 

0 22 0 23 0 14 0 23 

22 0 68 0 37 0 37 0 

0 68 0 82 0 60 0 82 

23 0 82 0 53 0 52 0 

0 37 0 53 0 45 0 52 

14 0 60 0 45 0 45 0 

0 37 0 52 0 45 0 53 

23 0 82 0 52 0 53 0 

A 2 

f l  0 1 0 0 0 0 0"  

0 2 0 1 0 0 0 1 

1 0 3 0 1 0 1 0 

0 1 0 2 0 1 0 1 

0 0 1 0 2 0 1 0 

0 0 0 1 0 2 0 1 

0 0 1 0 1 0 2 0 

\ 0  1 0 1 0 1 0 2 

A 4 

~2 0 4 0 1 0 1 0 

0 6 0 5 0 2 0 5 

4 0 12 0 6 0 6 0 

0 5 0 7 0 5 0 6 

1 0 6 0 6 0 5 0 

0 2 0 5 0 6 0 5 

1 0 6 0 5 0 6 0 

~0 5 0 6 0 5 0 7 

A 6 

6 0 16 0 7 0 7 0 

0 22 0 23 0 14 0 23 

16 0 52 0 30 0 30 0 

0 23 0 30 0 23 0 29 

7 0 30 0 23 0 22 0 

0 14 0 23 0 22 0 23 

7 0 3O 0 22 0 23 0 

0 23 0 29 0 23 0 30 

A s 

22 0 68 0 37 0 37 0 

0 90 0 105 0 74 0 105 

68 0 232 0 142 0 142 0 

0 105 0 135 0 105 0 134 

37 0 142 0 98 0 97 0 

0 74 0 105 0 90 0 105 

37 0 142 0 97 0 98 0 

0 105 0 134 0 105 0 135 
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Table 2 

The eigenvalues and an orthonormal basis of eigenvectors of 3. 

Ekenvalues 

-2.13578 - 1.41421 - 1.00000 -0.66215 0.66215 1.00000 1 .41421  2.13578 

E~envectors 

-0.14407 0.35355 0.00000 0.59518 -0.59518 0.00000 0.35355 - 0.14407 

0.30771 - 0.50000 0.00000 - 0.39410 - 0.39410 0.00000 0.50000 - 0.30771 

- 0.51312 0.35355 0.00000 - 0.33423 0.33423 0.00000 0.35355 - 0.51312 

0.39410 0.00000 - 0.50000 0.30771 0.30771 0.50000 0.00000 - 0.39410 

-0.32860 - 0.35355 0.50000 0.13048 -0.13048 0.50000 -0.35355 -0.32860 

0.30771 0.50000 0.00000 - 0.39410 - 0.39410 0.00000 - 0.50000 - 0.30771 

-0.32860 -0.35355 -0.50000 0.13048 -0.13048 -0.50000 -0.35355 -0.32860 

0.39410 0.00000 0.50000 0 .30771  0.30771 - 0.50000 0.00000 -0.39410 

THEOREM 3.3 

For  two ver t ices  i and j o f  a graph G with ad jacency  mat r ix  A, the fo l lowing  
s ta tements  are equivalent :  

(i) i and j are endospec t ra l ,  

(ii) i and j are i socoeff ic ien t ,  

(iii) i and j are o r thogona l ly  related,  

(iv) i and j are isocodal .  

Proof 

(i)  ¢::> (i i)  

The  equ iva lence  o f  endospec t ra l i ty  and i socoef f i c i ency  has been  s h o w n  by  
He rndon  and El lzey  [7]. The i r  p r o o f  can be s impl i f ied  us ing l e m m a  3.1: Ins tead  o f  

cons ider ing  subst i tu t ion o f  an arbi t rary  f r agmen t  at site i or  j ,  it is suff ic ient  to 
s imply  add a ver tex  at i or j in turn. We will g ive  m o r e  detai ls  o f  the p r o o f  in the 

next  sect ion,  where  it is modi f i ed  for  endospec t ra l  pairs  (see p r o o f  of  theorem 4.2). 

( i i)  ~ (iii) 

We  assume  ver t ices  i and j to be i socoef f ic ien t  and choose  a par t icular  
o r thonorma l  basis  o f  IR n, cons is t ing  o f  e igenvec to r s  o f  A, so that condi t ion  (12) is 
sat isf ied for  all these e igenvec tors .  This  is poss ib le  by  l e m m a  3.2. N o w  we are able 
to t rans form this basis  into another  o r thonorma l  basis  o f  IR", l ikewise  cons is t ing  o f  

e igenvec to r s  o f  A, so that the j t h  coef f ic ien ts  o f  the la t ter  basis  are exac t ly  equal  
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to the ith coefficients of  the former: we have just to multiply each vector of  the 
first basis by + 1 or - 1 according to equality ot inequality of the signs of its ith 
and j t h  coefficient. So, by matching of corresponding eigenvectors, an orthogonal 
basis transformation S : IR n ~ IR n is constructed with properties (7) and (8) being 
valid, that is, vertices i and j are orthogonally related. (By this construction, it 
becomes clear that S has the same eigenvectors as A, but with all eigenvalues having 
an absolute value of  1.) 

(iii) ~ (i) 

Vertices i and j are assumed to be orthogonally related. By lemma 3.1, it is 
sufficient to prove isospectrality of the graphs G i and Gj which emerge from G by 
marking i or j by a loop. Their adjacency matrices have the form 

A i =  A + E i ,  

A j =  A + Ej ,  

where E i (Ej)  is the matrix with entry 1 in the ith ( j t h )  diagonal element and 0 
elsewhere. 

By assumption, we have an orthogonal relation S with (7) 

SA = AS,  

which can be written as 

SA i - SE  i = A j S  - EjS .  

On the other hand, assumption (8) 

Se i = ej 

proves to be equivalent to 

SE  i = EjS.  

SO, we obtain 

SA i = AjS ,  

which is by (1) the isospectrality of graphs G i and Gj. 

(iii) ~ (iv) 

Again we presume the existence of an orthogonal relation S between i and 
j. If we write (,x, y )  for the usual scalar product of  vectors x and y, we can conclude 
by conditions (8), (7), and the orthogonality of S that 
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a(i~ ) = (e i , A ~ei) = (S- le j ,  A Vei) = (ej, SA Vei) 

= (ej, AVSei) = (ej, AVej) = aSj) 

holds for v = 0, 1,2 . . . . .  showing the isocodality of i and j. 

(iv) :=> (iii) 

Now we assume i and j  to be isocodal and define V as the smallest A-invariant 
subspace of IR n which contains e i. Let m be the dimension of  V. Then, ei, Ae i, 
Aaei . . . . .  A m- le i serve as a basis for V. Now define a map S : V --+ W = S(V) by 
letting 

SAVei=AVej ( v = 0  . . . . .  m -  1). 

Then S is an orthogonal transformation. This is established by the presumption of 
isocodality: For basis vectors AVei, A~ei (0 < v, # < m -  1) of V, we have 

(SA Vei ,SAPei)  = (A Vej ,Al~ej ) = (ej ,Al~+Vej ) =  a~.~ +v) 

= al/~+ v) = (e i ,AP+Vei )= (A Vei,Al~ei). 

Therefore W, as an orthogonal image of V, is also an A-invariant m-dimensional 
subspace of Rn. Moreover, on V, condition (7) 

SA = AS 

holds by definition: For v ~ IN, we have 

SAVe i = A Vej = A VSei. 

Our aim is to extend S to the whole IR n. To do this, we regard IR" as a direct sum 
of  orthogonal subspaces as follows: 

I R ~ = V n W  @ V ~ W ± @  v X n w  @ v X n w  ±. 

Some of these spaces may have dimension 0. All spaces are A-invariant, as already 
known for V and W. This is true by orthogonal complements of A-invariant subspaces 
being A-invariant themselves, and by the same holding for intersections of  spaces 
with this property each. 

The next step is to prove the existence of an orthonormal basis of JR n which 
consists of  eigenvectors of A and is representable as the union of bases of  the four 
subspaces. This follows from the fact that A, restricted on each subspace, as a 
symmetrical map has an orthonormal basis of eigenvectors. We have already defined 
S : V --+ W. Now S : V ±--+ W J- has to be constructed appropriately. Let x ~ V be an 
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element of  the above basis, that is, an eigenvector associated with an eigenvalue 
)t of  A. Then 

ASx = SAx = S}tx = 2Sx, 

that is, with x ~ V, its image Sx ~ W also has to be an eigenvector of  A associated 
with the same eigenvalue. Therefore, V and W contain eigenvectors which belong to 
the same set of  eigenvalues of A. Consequently, the remaining eigenvalues are associated 
with both V i and W ±, and it is possible to define S on V ± such that for each basis 
eigenvector y ~ V ±, its image Sy ~ W ± belongs to the same eigenvalue/2, q~en 

SAy = S#y = #Sy = ASy 

holds, and therefore for all y ~ IR ~ condition (7) 

SA = AS 

is fulfilled. Now S : IR n ~ IR n is a map meeting all requirements for an orthogonal 
relation between vertices i and j. [] 

Let us make a few remarks about alternatives to the proof given here. First, 
there exists a way to prove the equivalence of endospectrality (i) and iso- 
codality (iv) directly [8, 16]. This proof uses the identity of the spectral moments 
(which are defined to be the traces of A, A 2, A 3 and so on) of isopectral graphs, 
which is easily established. This is applied, for example, to the two graphs obtained 
by marking vertex i or j in turn. By complete induction, it can be shown that the 
identity of  spectral moments is equivalent to isocodality of  i and j. To prove this, 
we need the fact that spectral moments and eigenvalues contain equivalent information, 
which is known but not obvious. (According to Gantmacher [17], the method for 
determining the coefficients of the characteristic polynomial using the spectral 
moments goes back to Le Verrier and applies Newton's formulas.) This proof 
(which to our knowledge has not been described in detail) seems to be rather 
lengthy, while our proof (via the concept of  orthogonal relation) uses elementary 
linear algebra exclusively. This is particularly true for (iii) ~ (iv) and (iii) ~ (i), 
performed above, and also for a direct proof of (iii) ~ (ii), given here as an extra 
proof (presumption and notation are as above, while eq. (10) has to be proven): 

m m m m ??l m 
2 E Xr, E(e,,x,.) 2 ,~_.~(Sei,Sx,.) 2 y~(e j ,Sx , . )  2 ~_,(Sx,.)~ E 2_ = = = = = X r i ,  

r = l  r = l  r = l  r = l  r = l  r = l  

where (Sxr) j denotes the j th  coefficient of  Sxr and the last equality holds since the 
sum of squares over each row does not change under an orthogonal transformation. 

Graph 3 may serve as an example for the construction of an orthogonal 
relation between two isocodal vertices. 
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We show how the orthogonal map which is represented by matrix T2 given 
above can be constructed using the isocodality of  vertices 2 and 6. We use the 
method outlined in part (iv) ~ (iii) of the proof. 

The matrices B and C given below contain the columns 

e2, Ae2 . . . . .  ASe2 (B), 

e6, Ae6 . . . . .  ASe6 (C), 

where e 2 and e 6 are the second and sixth unit vector and A is the adjacency matrix 
of  3, given in table 1. So, 

B = 

0 1 0 2 
1 0 2 0 
0 1 0 4 

0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 1 

0 0 1 0 

0 6 
6 0 
0 16 

5 0 

0 7 ' 
2 0 
0 7 

5 0 

C = 

0 0 0 0 0 2 

0 0 0 0 2 0 
0 0 0 2 0 12 

0 0 1 0 5 0 
0 1 0 3 0 11 
1 0 2 0 6 0 
0 1 0 3 0 11 

0 0 1 0 5 0 

The rank of  both B and C is m = 6, and by the equality of  rows 4 and 8 and of  rows 
5 and 7, this is the maximal number of  linearly independent iterations of  A on e 2 
and e 6. We have to find a matrix S with 

S B = C .  

Using the pseudo-inverse [17] B + of  B, defined as 

B+= (BTB)-IB r 

(BTB being regular, since B has maximal rank), we obtain 

S = CB + = C(BTB)-IB T. 

S, restricted on the space V generated by the columns of  matrix B, is an orthogonal 
map with 

S e  2 = e 6, 

but not orthogonal on IR s. Hereby, 

V-- W =  {(x 1 . . . . .  x8) T 'X  5 = x 7 , x  4=x8} 

and therefore the orthogonal complement V ±= W ± is generated by 
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and 

1 Yx = g ( 0 , 0 , 0 , 1 , 1 , 0 , - 1 , - 1 )  

Y2 = ½ ( 0 , 0 , 0 , 1 , - - 1 , 0 , 1 , - - 1 ) ,  

where Yl and Y2 are orthonormal eigenvectors of A associated with eigenvalues 1 
and -1 .  So we define T 2 by 

t Sx ,  x E V, 
T2 x = Yl , x = Yl , 

Y2 , x = Y2 • 

T 2 is orthogonal on the whole IR 8. This matrix was given above. It can be interpreted 
as a somewhat frustrated reflection by the axis connecting vertices 4 and 8, which 
are invariant, while vertex 2 is mapped onto 6 and vice versa. The same matrix can 
be constructed by the "matching" method outlined in part (ii) =~ (iii) of  the proof, 
using the isocoefficiency of vertices 2 and 6 in the orthonormal system of eigenvectors 
given in table 2. 

The latter method was used for another example, graph 8 (fig. 5). Here, 
vertices 1 and 10 are endospectral [6, 18]. In this case, the orthogonal relation is 

8 1 7 ~  

6 5 14 15 

12 

Fig. 5. A graph containing endospectral vertices (1 and 10). 

not unique, due to the occurrence of  degenerate eigenvalues. One solution, probably 
the simplest one, is given by matrix T 3 below. T 3 represents an "unsuccessful 
attempt" to force the two halves of 8 to coincide. 
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T 3 = (1/4) 

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

0 2 0 0 0 0 0 0 - 2  0 2 0 0 0 0 

0 0 3 - 1  0 0 - 1  - 1  0 0 0 1 1 0 0 

0 0 - 1  3 0 0 - 1  - 1  0 0 0 1 1 0 0 

0 0 0 0 2 - 2  0 0 0 0 0 0 0 2 2 

0 0 0 0 - 2  2 0 0 0 0 0 0 0 2 2 

0 0 - 1  - 1  0 0 3 - 1  0 0 0 1 1 0 0 

0 0 - 1  - 1  0 0 - 1  3 0 0 0 1 1 0 0 

0 - 2  0 0 0 0 0 0 2 0  2 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 2 0 0 0 0 0 0 2 0 2 0 0 0 0 

0 0 1 1 0 0 1 1 0 0 0 3 - 1  0 0 

0 0 1 1 0 0 1 1 0 0 0 - I  3 0 0 

0 0 0 0 2 2 0 0 0 0 0 0 0 2 - 2  

0 0 0 0 2 2 0 0 0 0 0 0 0 - 2  2 

0 0 1 1 0 0 1 1 0 0 0 - 1  - 1  0 0 

0 0 1 1 0 0 1 1 0 0 0 - 1  - 1  0 0 

0 2 0 0 0 0 0 0 2 0 - 2  0 0 0 0 

0 0 0 -  

0 0 2 

1 1 0 

1 1 0 

0 0 0 

0 0 0 

1 1 0 

1 1 0 

0 0 2 

0 0 0 

0 0 - 2  

- 1  - 1  0 

- I  - 1  0 

0 0 0 

0 0 0 

3 - 1  0 

- 1  3 0 

0 0 2 

4. Isospectral pairs within a graph (endospectral pairs) 

D E H N I T I O N  

Two unordered pairs of vertices (i , j)  and (k, l) ( i < j ;  k <  l; 1 < i,j, k, l< n) 
in a graph are called isospectral pairs or endospectral pairs (of vertices) if every 
perturbation at pair ( i , j )  or (k, l) in turn results in two isospectral graphs. 

The expression "every perturbation" needs a precise interpretation. One kind 
of  perturbation is attachment of an arbitrary fragment at (i , j)  or (k, l). Examples 
of  such fragments are: an additional edge between i a n d j  (k and/ ) ;  more generally, 
a new "bridge" (chain) of arbitrary length between i and j ;  loops at i and j. Also, 
erasing pair (i ,j)  or (k, l) should be allowed. Moreover, even an asymmetrical  
perturbation (treating i differently from j )  is allowed, provided that either vertex 
in (k, l) is treated identically to its "corresponding" vertex in (i,j). What is the exact 
meaning of "correspondence" between vertices? Let us assume that i and k are 
"corresponding" vertices, as are j and l. Then we postulate that perturbing i or k 
in turn, while leaving j and l unchanged,  leads to isospectral graphs. This is exactly 
the requirement that the vertices i and k are endospectral,  and also (by the same 
reasoning) the vertices j and I. We conclude that correspondence between vertices 
has to be interpreted as endospectrality. Hence, we obtain pairwise endospectrality 
of the vertices as a necessary condition for endospectrality of  the pairs. We note 
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that this requirement has a perfect analogue in a condition for pairs which are 
equivalent by symmetry: for these, it is necessary (but not sufficient) that the 
vertices forming the pairs are in pairwise identical cells of the automorphism partition. 
Moreover, such pairs provide a first (trivial) example of endospectral pairs. 

Unfortunately, there is no analogue for pairs to the Hosoya formula for 
vertices, eq. (2). Therefore, we lack a theorem like the above (lemma 3.1) which 
could facilitate the direct verification of endospectrality of pairs. The more desirable 
is a characterization of endospectral pairs by related properties which would enable 
us to verify endospectrality of pairs without attaching legions of fragments. In fact, 
it will become apparent that the concept of orthogonal relation is a valuable tool 
to reach this goal. 

First, the definitions of orthogonal relationship, isocodality and isocoefficiency 
of pairs will be given, followed by examples. Then we will prove the main theorem 
(4.2) about endospectral pairs, which is fully analogous to that about endospectral 
vertices (3.3). 

DEFINITION 

Two pairs ( i , j )  and (k, l) in a graph with adjacency matrix A are called 
orthogonally related if there exists an orthogonal matrix S with (7) 

and 

S A = A S  

(Sei = e~ and Sej = e l )  

or (14) 

(Se i= e I and Sej= ek). 

If S can be chosen even as a permutation matrix, then S corresponds to an 
automorphism of the graph which maps pair ( i , j )  onto pair (k, l), so rendering them 
equivalent by symmetry. 

DEFINITION 

Using the notation introduced in section 2, we call two pairs (i, j )  and (k, l) 
(weakly) isocodal if the corresponding matrix elements are equal for (i, j )  and (k, l) 
in all powers of A: 

= ( v  = O, 1, 2 . . . .  ) .  (15) 

The pairs are called strictly isocodal if additionally 
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(a~')= a(k~ ) and a~.j~)= a}~ ) for v =  0, 1, 2 . . . .  ) 

or (16) 

(al.~)= a~ ') and a~.~)= a(k~, ) for v = 0, 1, 2 . . . .  ) 

holds. 

Expression (16) means that the vertices are pairwise isocodal and therefore, 
which is equivalent, pairwise endospectral. 

D E F I N I T I O N  

Two pairs (i, j )  and (k, l) are called (weakly) isocoefficient if for each eigenspace 
V of A and each orthonormal basis {x I . . . . .  Xm} of V the sum over the products of 
the ith and j t h  coefficient is equal to the sum over the products of the kth and lth 
coefficient: 

m m 

Z XriXrj = Z XrkXr l '  (17) 
r= l r= l 

where xr = (Xrl . . . . .  Xrn) T for r = 1 . . . . .  m. The pairs are called strictly isocoefficient 
if in addition 

2 2 2 2 
Xri = Xrk and xrj = Xrl 

r = l  r = l  r = l  r = l  
for each eigenspace 1 

or (18) 

2 2 2 
X = Xrl and x~j = Xrk 

\ r = l  r = l  r = l  r = l  
for each e!genspace 1 

holds. 

Expression (18) means that the vertices are pairwise isocoefficient and therefore, 
which is equivalent, pairwise endospectral. 

Examples 

(i) Pairs which are equivalent by symmetry meet all the requirements given 
and therefore are orthogonally related, strictly isocodal, and strictly isocoefficient. 

(ii) Pairs (2, 4) and (4, 6) in 3 are both strictly isocodal and strictly isocoefficient, 
as is seen by inspection of tables 1 and 2. In fact, the vertices are pairwise endospectral: 
2 and 6 served as an example for endospectral points in section 2, and 4 is endospectral 
to itself. 
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(iii) Lowe and Davis [4] give an example for two pairs (edges (1, 2) and 
(4, 5) in 9, fig. 6) which are both isocodal and isocoefficient, but neither strictly 
isocodal nor strictly isocoefficient. Graph 8 provides examples of (weakly) isocodal 
and isocoefficient pairs (both edges and non-edges), as listed in [6]. 

6 4 

5 

Fig. 6. A graph containing two (weakly) isocodal 
and (weakly) isocoefficient edges (1, 2) and (4, 5). 

(iv) In the graph of twistane (10, fig. 7), pairs (1, 5) and (1, 9) are both 
strictly isocodal and strictly isocoefficient [6]. Obviously, the vertices are pairwise 
equivalent by symmetry and thus endospectral. The following theorem (4.2) shows 
that (1, 5) and (1, 9) are endospectral pairs. 

9 10 

7 2 

5 4 

1 0  

Fig. 7. The graph of twistane containing 
two endospectral pairs (1, 5) and (1, 9). 

(v) A rather complex example, going back to Balaban [19], is provided by 
graph 14 in ref. [6]. There we gave an (incomplete) list of endospectral points and 
pairs in this graph, and further simple examples of endospectral points and pairs 
may be found there. 
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LEMMA 4.1 

Let (i, j )  and (k, l) be strictly isocoefficient pairs of  vertices in a graph with 
adjacency matrix A. For each eigenspace V of  dimension m of  A, the orthonormal 
basis {x 1 . . . . .  x.,} can be chosen such that even 

X r i X r j  = Xrk Xrl  (19) 

and 

X r _= 2 2 2 X rk a n d  X rj "~ X rl ) 

or (20) 

X r  . = 2 2 2 Xrl  a n d  Xr j  = Xrk ) 

holds for r = 1 . . . . .  m. 

The proof, not given here, is a slight modification of the proof of  lemma 3.3. 

Now it will be shown that the properties strict isocodality, strict isocoefficiency, 
and orthogonal relationship are adequately defined such that each of  them is necessary 
and sufficient for endospectrality of  pairs. 

THEOREM 4.2 

For two pairs (i, j )  and (k, l) in a graph, the following statements are equivalent: 

(i) The pairs are endospectral. 

(ii) The pairs are strictly isocoefficient. 

(iii) The pairs are orthogonally related. 

(iv) The pairs are strictly isocodal. 

Proof 

We use methods very similar to those of the proof of theorem 3.4. Therefore, 
we will often refer the reader to the former proof in order to avoid repetitions. 

(i)  ~ ( i i )  

Two pairs (i, j )  and (k, l) are assumed to be endospectral. We imitate the 
proof of Hemdon and Ellzey [7]. By the presumption of endospectrality, attachment 
of  one new vertex in i and j results in a graph H 1 which is isospectral to H 2 resulting 
from attaching the new vertex in k and l. If (without restriction) i = 1 and j = 2, the 
adjacency matrix of H I is given by 
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A l =  

al l  a12 . . .  a l n  1 

a21 a22 . . .  a2n 1 

• • • • .  " 0 

a i l  an2 . . .  ann • 
1 0 . . .  0 

A 1 is transformed into a matrix D 1 of  dimension n + 1: 

,7t.1 X l i -t- X l j 

~2  X z i  4- X2j  

D 1 = 

~n Xni + Xnj  

X l i  "4-Xlj X2i  + X 2 j  . . .  Xni  + X n j  0 

Here, the upper left part is an n x n diagonal matrix which contains the eigenvalues 
~1 . . . . .  2n of A. The (n + 1)st column and row contain the sums of  the ith and j t h  
coefficient of  each eigenvector (associated with ~1 . . . . .  )~n), where the eigenvectors 
form an orthogonal basis of  IR n. This transformation of  A1 into D 1 corresponds to 
a basis transformation from the canonical basis into a new one, which consists of  
the above orthogonal system of eigenvectors (each vector completed by an (n + 1)st 
component 0) and the (n + 1)st unit vector. Likewise, the matrix A 2, which describes 
the graph with a new vertex adjacent to k and l, is transformed into a matrix D 2 
equal to D 1 with the exception that the indices i and j are replaced by k and l, while 
the eigenvalues )~1 . . . . .  ~n are the same as in D 1 by the isospectrality of  H 1 and 
H 2. Now D~ and D 2, being derived from A 1 and A 2 by a basis transformation, also 
have identical eigenvalues. It can be shown that this is equivalent to 

m m 

(xri + = (xrk + Xrt)2, 
r= 1 r= 1 

where the summation is done over all components belonging to the same eigenvalue. 
With the pairwise isocoefficiency of the vertices (18), which follows from their 
pairwise endospectrality, we also know that 

m m 

r= 1 r= 1 

and so we obtain (17) 
m m 

E XriXrj  "= E XrkXr l ,  
r =  1 r =  1 

which completes the proof of the strict isocoefficiency of the pairs ( i , j )  and (k, l). 
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( i i )  ~ (iii) 

We assume pairs (i, j )  and (k, l) to be strictly isocoefficient. As in the 
corresponding part of the former proof, we can choose an orthonormal basis consisting 
of  eigenvectors x 1 . . . . .  x~ of  A, which fulfill conditions (19) and (20). If in some 
vector x r the kth coefficient (which may correspond to the ith) still differs from the 
ith in its sign, we define yr by Yr = --Xr" Then we have 

Yrk  = - - X r k  ---- Xri 

and by (19) also 

Yrl  ---- - -Xr l  = Xrj" 

If x~k already equals x~,-, we set y~ = x r. Then all the kth (lth) coefficients of  the 
basis {Yl . . . . .  Yn} agree exactly with the ith ( j th)  coefficients of  the basis {x 1 . . . . .  xn}, 
and the basis transformation S : IR n ~ IR n, defined by 

Sx~ = yr (r = 1 . . . . .  n), 

has the desired properties (7) and (14). Hence, S serves as an orthogonal relation 
of  ( i , j )  and (k, l). 

(iii) ~ ( i )  

We assume ( i , j )  and (k, l) to be orthogonally related by a transformation S 
with (7) 

SA = AS 

and (14), say 

Se i = e k and Sej = ez. 

We have to show that each perturbation at (i, j )  or (k, l) in turn provides two 
isospectral graphs. 

Let the adjacency matrix of  the graph perturbed in pair ( i , j )  be denoted as 
Aij, the other (perturbed in (k, l)) as Akt. Both matrices have identical dimension, 
which is not necessarily n. Now we have to find an orthogonal matrix T of  the same 
dimension, for which it holds that 

TAij = AktT. (21) 

It will be shown that T exists and can be chosen as follows. For each r ~ { 1 . . . . .  n}, 
corresponding to a vertex r of  the given graph, let 

Te r =Ser  (r < n), 
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particularly by (14) 

T e  i = e  k and T e j = e  t. (22) 

(The components i and j may be missing if the perturbation is erasure of at least 
one of  these vertices.) For each additional component r belonging to an attached 
fragment let 

T e  r = e r ( r  > n) .  

That is, vertices which are not part of the original graph are invariant under T. We 
have to show that by this choice of T eq. (21) is satisfied, independently of  the kind 
of  perturbation used. There are several types of perturbations which have to be 
differentiated: 

• eliminating one or both vertices of a pair, 

• eliminating the edge connecting the vertices of a pair (if any), 

• attaching a loop ("marking") at one or both vertices of  a pair, 

• joining the vertices of a pair by a new edge, 

• attaching an arbitrary fragment at the pair. 

We give the proof in detail for the last case only, since it is in some sense the most 
general case; the others are similar, as well as easier to treat. 

Let A be the adjacency matrix of the given graph (of dimension n) and B that 
of  the fragment (of dimension m) which is attached. Without restriction, we can 
assume that i = 1, j = 2, k = n - 1, 1 = n. Then the connection between A and B is 
described by a 2 x m matrix. 

c (Cll . . . . . .  
C21 . . . . . .  C2m 

and we have 

A i j =  

a l l  • . .  

a n |  - , ,  

C l l  C21 0 

• .. aln C l l  . . .  Clm ~ 

C21 . . .  C2m 

0 ... 0 

. . .  ~ 0 . . .  0 

. . .  0 b l l  . . .  b l ~  

¢1m CZm 0 . . .  0 b,~l . . .  b ~ m  j 
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m k l  = 

F 

al 1 . . . . . .  al ~ 0 . . .  0 

a n l  . . . . . .  an n 

0 . . .  0 CI1 C21 

0 . . .  0 C l m  e 2 m  

• , .  0 

C l l  . . .  C l m  

C21 . . .  C2m 

b l l  . . .  b l m  

brn l  • . .  brnm 

T, defined as above, by (22) has the form 

T = 

0 0 s~3 

0 0 Sn - 2 , 3  

1 0 0 
0 1 0 • . °  

S l n  

Sn - 2 , n  

0 
0 

1 

1 

where I is the unit matrix and O the null matrix. The validity of  (21), agreement 
of both matrix products, is easily checked using eq. (7). 

(iii) ~ ( iv)  

The presumptions are as in the preceding part of the proof• We have to prove 
strict isocodality of pairs ( i , j )  and (k, l). Thereby, (16) is a direct consequence of 
the fact that the vertices are pairwise orthogonally related and therefore isocodal. 
So we have to prove only (15). This is done by 

a l j  ) =  ( e i ,A  Vej ) = (S - l  ek ,A  Vej ) = ( e k , S A  V ej ) 

= ( e k , A V S e j )  = ( ek ,A  Vet)= a(~ ) 

for v = 0 ,  1,2 . . . . .  

( iv)  ==> (iii) 

Here, the point is to conclude from the strict isocodality of pairs ( i , j )  and 
(k, l) not only that the vertices are pairwise related by two orthogonal mappings 
(which follows from theorem 3.3), but to show that there exists a single transformation 
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S which effects both. The method is very similar to that of the corresponding part 
of the former proof. If (16), say, 

and 

holds for all v = 0, 1,2 . . . . .  we define V as the smallest A-invariant subspace of 
IR n containing e i and ej. Let m be the dimension of V. We define S : V --+ W = S(V) 
by 

SAVei = AVek, SAVej = AVel (v = 0 . . . . .  m - 1). 

S is an orthogonal transformation. This is shown, without restriction, for "mixed" 
scalar products of  base vectors A~ez, AUej using (15): 

(A Vei,Al%) ) = (ei,A#+Ve) )= al~ +v) = ~'kt"O*+v) 

= (ek,A È+~el) = (AVe k,A#et)  = (SA Ve i ,SA#ej) .  

(This can be interpreted as the invariance of "angles" under S.) The remainder of 
the proof (extension of S to IR n) is exactly the same as for theorem 3.3. [] 

By this theorem it is seen that the pairs of example (ii) are enclospectral, 
again with T 2 as orthogonal relation (already known from the preceding section 
about endospectral  vertices). The pairs of examples (iv) and (v) are endospectral,  
whereas those of example (iii) are not. 

5. Isospectra l  vertices and  pairs  in different  g raphs  

Randie pointed out that there are vertices in different graphs which are 
related by similar properties (e.g. isocodality) as the endospectral vertices treated 
in section 3 [2]. We shall characterize these points as isospectral by deducing the 
situation to that of endospectral points [20]. 

DEFINITION 

Vertices i in a graph G and j in a graph H are called isospectral if every 
perturbation at i (producing graph Gi) and at j (producing graph Hj) leads to 
isospectral graphs Gi and Hi. Similarly, pairs (i, j )  and (k, l) in different graphs are 
called isospectral if every perturbation in (i, j )  and (k, l) results in two isospectral 
graphs. 

Examples 

(i) Randi~ [2, 8] has given two examples, one of which (discussed earlier by 
Schwenk [21]) is shown in fig. 8. He noted that vertex 5 in graph 11 is isospectral 



234 Ch. Racker, G. Riicker, The concept of orthogonal relation 

1 1 2 

7 2 3 7 ~ ~  ~ 

\ / 
6 4 6 ,5 

ii 12 

Fig. 8. Two graphs containing 
isospectral vertices and pairs. 

4 

5 4 

1 3  

4 6 

1 4  

Fig. 9. Graphs resulting from erasure 
of an isospectral vertex from 11 or 12. 

to vertex 1 in 12. If the special vertices are erased, a single graph (13, fig. 9) is 
obtained. 

The same example was found independently by Lowe and Soto [5], who 
noted that the isospectral graphs 11 and 12 are also obtained by bridging pair (1, 5) 
or pair (3, 6) in graph 14 (fig. 9) by a one-vertex bridge. In fact, it can be shown 
that vertices 3 of 11 and 4 of 12 are also isospectral vertices. Moreover, we find 
that the pairs (3, 5) in 11 and (1, 4) in 12 (as well as pairs (3, 7) in 11 and (4, 7) 
in 12) are isospectral pairs. 

(ii) A rather complex example of isospectral graphs with several isospectral 
points and pairs is given by the two well-known graphs of Fisher [22] or their 
simplification given by Randi6 [2], which is shown in fig. 10. By proposition 5.1 
(see below), it is shown that each point in 15 marked by a symbol is isospectral 
to a point in 16 marked by the same symbol. Moreover, we found a list of several 
isospectral pairs in these graphs. Note that in contrast to the situation in Randi6's 
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15 16 

Fig. 10. The simplified Fisher graphs 
containing isospectral vertices and pairs. 

examples erasing a point in 15 and its isopectral counterpart in 16 results in two 
isospectral but not isomorphic graphs. 

The reader may have noticed that graphs containing isospectral points or 
pairs are themselves isospectral graphs. Now we give a characterization of isospectral 
points and pairs which shows that this is necessary. 

PROPOSITION 5.1 

Vertices i in G and j in H (or pairs (i, j )  in G and (k, l) in H) are isospectral 
if and only if the graphs G and H are isospectral and the vertices (pairs) are 
endospectral vertices (pairs) in the disjoint union of G and H. 

Proof 
Isospectrality of graphs G and H is necessary for that of the vertices 

(pairs), since the "void" perturbation ("do nothing") also should result in isospectral 
graphs. The remainder of the proof is done by inspection of the disjoint union of 
G and H and application of the definitions of endospectral and isospectral vertices 
(pairs). 

[] 

Example 

In fig. 11, two graphs are shown (17, 18) which are not isospectral. Although 
the vertices marked by a dot are endospectral in the disjoint union of 17 and 18 (this 
follows from their isocodality which was pointed out by Randi6 [23,24]), they 
cannot be isospectral vertices in the sense of the above definition. 
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17 18 

Fig. 11. Two graphs containing isocodal vertices. 

Note that endospectrality of  vertices (pairs) in the disjoint union implies 
isocodality and isocoefficiency as well. Therefore, these properties are not sufficient 
for isospectrality of vertices or pairs in different graphs. 

Our last proposition characterizes isospectral vertices and pairs (in different 
graphs) by the concept of orthogonal relation. 

PROPOSITION 5.2 

Vertices i in a graph G (adjacency matrix A) and j in a graph H (adjacency 
matrix B) are isospectral if and only if there exists an orthogonal relation between 
them, that is, an orthogonal transformation S with (1) 

SA = BS 

and (8) 

Sei = e/. 

Pairs (i, j )  in G and (k, l) in H are isospectral if and only if there exists an orthogonal 
transformation S for which instead of (8) condition (14 )ho lds  (known from 
section 4). 

Proof  

The proof is drawn here for vertices only; for pairs it is done in an analogous 
m anne r. 

First, let i and j be isospectral vertices. Then, by proposition 5.1, G and H 
are isospectral graphs and i and j are endospectral vertices in the disjoint union 
G u H of G and H and therefore isocoefficient. By a similar method as was used 
in part (ii) ~ (iii) of the proof  of  theorem 3.3, an orthogonal map S can be defined 
which maps the eigenvectors of  A onto those of B which belong to the same 
eigenvalues, in such a way that S has properties (1) and (8). 

For the backward direction of the proof, we presume the existence of  an 
orthogonal transformation S with properties (1) and (8). By (1), the isospectrality 
of graphs G and H is seen. It remains to be shown that i and j are endospectral 
vertices in the disjoint union G u H. In fact, by (1) and (8) it can be shown that 
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O S -1 ) 
U=S 0 

serves as an orthogonal relation between i and j in G to H. [] 

Example 
This proposition is illustrated by orthogonal matrix T 4 which transforms 

graph 11 into 12, at the same time mapping the vertices and the pairs as listed 
above. 

T4 = 

0 0 0 0 1 0 0 ~ 
0.5 -0 .5  0 0.5 0 0.5 0 

-0 .5  0.5 0 0.5 0 0.5 0 
0 0 1 0 0 0 0 

0.5 0.5 0 0.5 0 - 0 . 5  0 
0.5 0.5 0 - 0 . 5  0 0.5 0 
0 0 0 0 0 0 1 

6. Conclusion 

In the orthogonal relationship we found a simple means to demonstrate the 
equivalence of all the properties dealt with here. Moreover, this property is a 
generalization of the equivalence by symmetry. Of all the four properties discussed 
here, we would like to rate it the most valuable, since from it the others can be 
derived by straightforward lines of reasoning, the opposite directions, as a rule, 
being more difficult. 

In other words, we would have welcomed it if this property had been selected 
to characterize vertices and pairs that are "somewhat less than equivalent by symmetry", 
the more so since it is mathematically completely analogous to the isospectrality 
of graphs, which characterizes graphs which are "somewhat less than isomorphic". 
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